
NormalFlow: Fast, Robust, and Accurate Contact-based Object 6DoF
Pose Tracking with Vision-based Tactile Sensors

Hung-Jui Huang1, Michael Kaess1, and Wenzhen Yuan2

Abstract— Tactile sensing is crucial for robots aiming to
achieve human-level dexterity. Among tactile-dependent skills,
tactile-based object tracking serves as the cornerstone for
many tasks, including manipulation, in-hand manipulation, and
3D reconstruction. In this work, we introduce NormalFlow,
a fast, robust, and real-time tactile-based 6DoF tracking al-
gorithm. Leveraging the precise surface normal estimation
of vision-based tactile sensors, NormalFlow determines object
movements by minimizing discrepancies between the tactile-
derived surface normals. Our results show that NormalFlow
consistently outperforms competitive baselines and can track
low-texture objects like flat table surfaces and ping pong
balls. Additionally, we present state-of-the-art tactile-based 3D
reconstruction results, showcasing the high accuracy of Nor-
malFlow. We believe NormalFlow unlocks new possibilities for
high-precision perception and manipulation tasks that involve
interacting with objects using hands.

I. INTRODUCTION

The skill to interact with and manipulate objects often
relies on accurate in-hand object tracking capability, which
remains a challenge for vision-based systems due to oc-
clusions during manipulation. Vision-based tactile sensors
like GelSight [1] offer a promising alternative, enabling
occlusion-free tracking. Prior works [2], [3], [4], [5] handle
object tracking by converting tactile images into point clouds
and applying registration methods like ICP [6], but these
often perform poorly due to the noise and distortion in
tactile-derived point clouds. In this work, we introduce
NormalFlow, a state-of-the-art tactile tracking algorithm
that outperforms point cloud registration methods in both
accuracy and speed. By directly minimizing discrepancies
between surface normal maps—rather than relying on point
clouds—NormalFlow achieves fast, robust, and accurate
6DoF pose estimation without object models, even on low-
texture surfaces like flat table surfaces and ping pong balls.
It achieves a mean translation error of 0.29mm (over a
total movement of 3.4mm), rotation error of 1.9◦ (over
a total movement of 37.4◦), running at 70Hz on CPU.
We also demonstrate its application in tactile-based 3D
reconstruction, producing high-quality geometry. We believe
NormalFlow opens new avenues for higher precision tactile-
dependent perception and control.

II. METHOD

NormalFlow tracks object motion by directly minimizing
differences between surface normal maps extracted from
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Fig. 1: NormalFlow performs fast, accurate, and robust 6DoF
object tracking based on only touch sensing. (a) Accurate
tracking of a wide variety of objects, including a wrench, a
rock, and even low-texture object like an egg. (b) Applying
NormalFlow to tactile-based 3D reconstruction of a 12mm
wide bead highlights NormalFlow’s high accuracy.

tactile images. We adapt the approach from [7] to esti-
mate these maps. Let I and I′ denote the surface normal
maps of a reference and a target sensor frame, respectively,
where each map is a function R2 7→ R3 from pixel
coordinates to surface normals (Fig. 2). Our goal is to
estimate the 6DoF transformation from the reference frame
to the target frame (Rθ, tθ) ∈ SE(3), parameterized as
θ = (x, y, z, θx, θy, θz) ∈ R6. NormalFlow minimizes the
difference between the transformed reference map I and the
target map I′ within the shared contact region:∑

(u,v)∈C

[I′(W(u, v;θ))−RθI(u, v)]
2 (1)

where (u, v) is the pixel coordinates and C is the shared
contact region. The re-mapping function W(u, v;θ) maps
pixel coordinates from the reference frame to the target
frame. Inspired by the Lucas-Kanade optical flow method [8]
[9], NormalFlow employs the Gauss-Newton optimization to



Fig. 2: Given two tactile images before and after object
movement, we derive the surface normal maps. NormalFlow
determines the object transformations by minimizing discrep-
ancies between the surface normal maps.

Fig. 3: Objects in the tracking experiment.

minimize Eq. (1) iteratively. Linearizing Eq. (1) at the current
estimate of θ results in:

∑
(u,v)∈C

[(
I′(W)−RθI

)
+
(
∇I′

∂W

∂θ
− ∂(RθI)

∂θ

)
∆θ

]2
(2)

This linear least squares problem in ∆θ is solved in closed
form. To improve efficiency, we also adopt the inverse
compositional method [9].

NormalFlow offers advantages over ICP by leveraging
surface normals for pose estimation. For example, surface
tilt can be directly inferred from normal rotations. For a
textured ball, ICP aligns global shape, ignoring textures,
whereas NormalFlow uses the variation in normal directions
to estimate pose from texture.

III. EXPERIMENTS AND RESULTS

We evaluate the tracking accuracy and runtime of Nor-
malFlow on 10 objects (Fig. 3). We collect seven tracking
trials for each object, with contact initiated at different poses.
Trials average 10.2 seconds in duration.

NormalFlow is compared against three point cloud regis-
tration baselines: Point-to-Plane ICP [6], FilterReg [10], and
FPFH + RANSAC + ICP [5] (FPFH+RI). Average tracking
errors are reported in Table I, and two example trials using
NormalFlow are shown in Fig. 4. NormalFlow outperforms
all baselines, especially on low-texture objects. FPFH+RI
frequently falls into local minima, highlighting the difficulty
of extracting reliable features from tactile point clouds. ICP
performs consistently worse than both NormalFlow and Fil-
terReg. While NormalFlow only marginally outperforms Fil-
terReg on highly textured objects (e.g., avocado), it shows a
clear advantage on less textured ones (e.g., wrench, gammer),
maintaining robust tracking where FilterReg often fails. To
the extreme, NormalFlow can robustly track objects like a flat
table, which is considered textureless by human standards.

Fig. 4: Example trials on two objects. RGB axes show
NormalFlow estimated poses. Transparent RGB axes show
true poses, nearly overlapping with NormalFlow poses.

Method x(mm) y(mm) z(mm) θx(◦) θy(◦) θz(◦)

NormalFlow 0.17 0.18 0.15 1.13 1.42 0.64
FilterReg 0.85 1.05 0.20 1.96 2.59 15.4

ICP 1.22 3.44 0.85 2.27 3.30 15.9
FPFH+RI 2.38 1.69 1.26 2.93 36.8 27.8

TABLE I: 6DoF tracking MAE

Fig. 5: Reconstruction results from GelSLAM.

On a laptop equipped with an AMD Ryzen 7 PRO 7840U
CPU without GPU acceleration, the average runtime of
NormalFlow is 13.9 ms, closely comparable to ICP at 13.6
ms, and significantly faster than FilterReg at 145 ms and
FPFH+RI at 127 ms.

IV. GELSLAM: TACTILE-BASED 3D RECONSTRUCTION

We propose GelSLAM, a real-time, tactile-only 3D recon-
struction algorithm built on NormalFlow. In our experiment,
the target object is manually rolled across the GelSight
Mini, revealing small surface patches in each tactile frame.
NormalFlow tracks the 6DoF pose over time, and when
a loop closure is detected, it estimates the relative pose
between the two endpoints. These poses are optimized in
real time using pose graph optimization. As shown in Fig.
5, GelSLAM produces highly detailed reconstructions of the
object surface—details that are often difficult to capture with
visual methods. Compared to prior approaches such as [2],
GelSLAM delivers significantly improved 3D reconstruction
quality. Its success highlights the precision of NormalFlow,
where even small errors can cause severe artifacts in the final
mesh.
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