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Abstract—Humans can convey a variety of messages through
touch alone. By enabling robots to recognize social touch, we add
another communication modality between humans and robots. In
this work, we introduce a social gesture recognition system that
utilizes a fabric-based, large-scale tactile sensor mounted on the
arms of a humanoid robot. We created a social gesture dataset
with data from multiple participants and extracted temporal fea-
tures for classification. By gathering tactile data from a humanoid
robot, our system offers insights into human-robot social touch
and demonstrates that fabric-based sensors could potentially
advance social-physical human-robot interaction (spHRI) systems
for more natural and efficient communication.

I. INTRODUCTION

Human beings communicate through a wide range of modal-
ities, and touch is one of the most inherent forms of interaction.
Social touch plays a variety of roles, such as promoting bond-
ing, facilitating allogrooming, and aiding in communication
[1]. For example, a handshake can signify appreciation [2],
while a gentle touch can communicate affection or comfort
[3]. With the increasing deployment of robots, particularly
humanoid robots in public spaces [4], enhancing robot socia-
bility through touch [5] is essential for fostering more natural
human-robot interactions. Achieving this requires robots to be
equipped with advanced tactile sensors capable of recognizing
and responding to diverse social-physical interactions (spHRI).

Although the need for effective gesture recognition in hu-
manoid robots is well-established, finding a robust solution
remains challenging. Many studies on gesture classification
rely on data not collected from humanoid robots [6], [7],
and those that use robotic platforms often employ small-scale
sensors or miniature robots [8], [9]. Despite advancements in
robotic skin development, existing technologies are often low-
resolution, difficult to fabricate, or lack the flexibility needed
to adapt to various robot forms [10]-[12], which hinders their
application in humanoid robots designed for spHRI.

We introduce a system for recognizing social gestures that
uses a large-scale, fabric-based tactile sensor attached to a
humanoid robot’s arms. To train the classifier, we created a
dataset by gathering gesture data from multiple participants
and extracting temporal features for analysis. Our machine-
knitted sensor’s flexibility allows for easy customization to fit
different robot shapes. Furthermore, data collection on a real
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Fig. 1. Our machine knitted large scale sensor has the ability to detect
different types of gestures. Features are extracted from the sensor reading
and fed into a model to classify the gesture being performed. The sensor is
composed of three layers, two conductive and one insulting forming a resistive
based tactile sensor.

humanoid robot provides a deeper understanding of human-
robot interactions through touch. We believe that improving
gesture recognition systems will lead to more natural and
engaging human-robot social interactions.

II. GESTURE RECOGNITION

Based on the touch dictionary [13], we selected six gestures
for our algorithm to classify (Fig. 2 (A)) . We chose a subset
of gestures because some were not suitable for humanoid
robots. For example, gestures like ’finger idly’ and ’cradle’
are more appropriate for animal-like robots, so we excluded
them. Additionally, certain gestures were left out due to
their similarity in sensor signals, which made them hard to
distinguish. For example, ’pat’ and ’tap’ generated almost
identical readings, and even humans might find it difficult to
tell them apart, so they were not included in our final selection.

A. Data Prepossessing and Feature Extraction

We processed and extracted temporal features from our
3D spatiotemporal data. We removed any frames that were
recorded before the sensor made initial contact, as the sensor
output was captured prior to the interaction. The feature we
focused on was the number of activated taxels per frame (Fig. 2
(C)). A taxel was considered activated if its digital reading
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Fig. 2. Display of the gestures and the signal reading. (A) A visual of the gesture being performed on the upper portion of the sensor. (B) A grid displaying
what the raw signal looks like. The values shown are the mean taxel value. (C) the feature extracted from the sensor reading, the number of taxels activated

per frame. (D) Confusion matrix of gesture recognition result

exceeded 10. For each frame, we calculated the total number
of activated taxels, creating an array of numbers representing
this count for every frame. Since each gesture had a different
frame length, the data was either padded or trimmed to a
standard length of 150 frames. The number of activated taxels
was generally unique to each gesture. Other potential features,
such as pressure or additional spatial data, did not improve
accuracy.

B. Experiments

1) Data Collection: To develop a system that can interpret
social gestures, we gathered data from 16 volunteers to create
a gesture dataset, consisting of six gestures, using our sensor.

Our experimental setup featured the sensor mounted on
Pollen Robotics’ Reachy 2023, along with a monitor for
displaying information. The sensor’s upper section included
a 5x7 grid, while the lower section featured a 4x7 grid. The
design of the sensor follows the work previously done by Si (
[14]). Data was sampled at approximately 50 Hz. To build our
dataset, we recorded gesture data from several participants.

The assignment of participants to either the training or test
set determined how many trials they would perform for each
gesture. Each participant’s data was exclusively assigned to
either the training or test set to avoid overlap. Participants
in the training set completed each gesture 15 times: nine
trials on the robot’s upper arm and six on the lower arm.
Participants in the test set performed each gesture five times,
with three trials on the upper arm and two on the lower
arm. We collected more data on the upper arm since, without
guidance, participants tended to favor it. To ensure balanced
data from the lower arm, we instructed participants to focus
on specific locations when performing gestures. The order
of gestures was randomized, but repetitions were performed
consecutively. Sixteen participants (50% female, aged 19 to
28, M = 23.12, SD = 2.18) contributed to the dataset. Our
dataset consisted of 1,080 samples, with 900 in the training set
and 180 in the test set. The training set included 150 gestures
per class, while the test set contained 30 gestures per class.

2) Results: Our method achieved an accuracy of 81.16%
(Fig. 2 (D)). However, some gestures were often misclassified.

For example, the gestures “hit” and “poke” were frequently
confused with each other, as were “shake” and “grab.” This
issue arose because the signals for hit” and “poke” were
sometimes similar. Specifically, when a participant struck the
sensor with an extended bone or knuckle, only one or two
taxels were activated, resulting in a signal similar to that of a
poke. While the results show promise, more data is needed to
examine the system’s performance when individuals perform
gestures in different ways.

IIT. CONCLUSIONS

In this work, we presented a system capable of distinguish-
ing between various gestures, highlighting the potential of
textiles in human-robot interaction. We developed a fabric-
based tactile sensor using machine knitting and created a social
gesture dataset. The dataset was collected with the sensor
mounted on a humanoid robot. However, the study is in its
early stages and has several limitations. Currently, the dataset
consists of able-bodied young adults, but people with diverse
abilities may interact with the system differently, potentially
causing misclassifications due to variations in gesture execu-
tion. Moreover, our focus has been on recognizing the gestures
themselves, without fully addressing the meaning or context
behind them.

Future work will expand the study to include individuals
with various abilities, helping us understand how gesture
variations can improve sensor design and make it more inclu-
sive. This will enhance the system’s accuracy in recognizing
gestures across different user groups, ensuring better respon-
siveness.

Gesture misclassification can lead to the robot misunder-
standing user intent. To improve this, we plan to explore
models that handle both spatial and temporal data and to better
understand the meaning behind gestures for more effective
communication with the robot. While this paper represents an
initial step in exploring textiles for interaction, we hope to
focus on how gesture variations affect robot interactions, with
the goal of refining the system to accommodate a broader
range of users.
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